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In recent years we have developed high accuracy finite difference approximations for partiai
differential equations of elliptic type, with particular emphasis on the convection-diffusion
ecuation. These approximations are of compact type, have a local truncation error of fourth
order, and allow the use of standard iterative schemes to solve the resulting systems of
algebraic equations. In this paper, we extend these high accuracy approximations to the solu-
tion of Navier-Stokes equations. Solutions are obtained for the model problem of driven
cavity and are compared with solutions obtained using other approximatiops and those
obtained by other authors. It is discovered that the high order approximations do indeed
produce high accuracy solutions and have a potential for use in solving important problems
of viscous fluid flows. € 1991 Academic Press. Inc.

INTRODUCTION

The basic model for the fluid dynamics phenomena representing two- and three-
dimensional flows of an incompressible viscous fluid is given by the Navier-Stokes
equations that represent the conservation of mass, momentum, and energy. These
equations are highly nonlinear and are very difficuit to solve, especiallv when the
approximate solutions are required to have a high accuracy. A related problem is
that of obtaining highly accurate solutions of the convection—diffusion equatica,
especially when convection is the dominating phenomena.

Prior to the last decade, many researchers examined a number of {first- and
second-order finite difference and finite element methods that were accurate and
stable. In the area of finite difference methods, it was discovered that although
central difference approximations were locally second-order accurate they often
suffered from computational instability and the resulting solutions exhibited non-
physical oscillations. The upwind difference approximations were computationally
stable, aithough only first-order accurate, and the resulting solutions exhibited the
effects of artificial viscosity. The second-order upwind methods were no better and
the higher order finite difference methods of conventional type were compuia-
tionally inefficient.

An exception has been found in the high order finite difference schemes of com-
pact type that are computationally efficient and stable and vield highly accurate
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numerical solutions at least for the linear and quasilinear partial differential equa-
tions. Simplest version of such compact schemes is given for the Poisson equation

Oufox? + &’ufoy” = f(x, y)

which can be discretized at a grid point (x, y) by a nine-point finite difference
approximation:

4Luy +uy+us + uy] +us+ug+ uz +ug —20uy=3h[fi+ fo+ f3+ fa + 8fo]

(See Fig. 1 for the computational stencil.) This approximation was named
Mehrstellenverfahren by Collatz [37 (see also [10]). It has a local truncation error
of order 4* and is an approximation of compact type as it involves only the eight
nearest neighbours of the point (x, y). This type of approximations have been
obtained for other elliptic equations by many researchers: the Hodie schemes of
Lynch and Rice [14] (see also [2]), the OCI schemes of Berger er al. [1], and the
SCHOS schemes of Gupta et al. [12,13] all reduce to the above difference
approximation when applied to the Poisson equation. Similar compact schemes of
order 4% have also been obtained [15].

The compact schemes of Gupta er al. (called SCHOS in the earlier papers) were
applied to the convection—diffusion equations in particular and were found to yield
high accuracy when applied to a large number of test problems including problems
of convection-dominated flows [127]. In this paper, we extend these finite difference
schemes to the Navier-Stokes equations. As a test of this method, we solve the
model problem of a lid driven cavity for small to moderate values of the Reynolds
number and compare our numerical solutions with the highly accurate benchmark
solutions available in the literature. We find that our method yields high accuracy
even though we use a relatively coarse grid.

In the next section we describe the fourth-order compact difference schemes for
the convection—diffusion equation and for the Navier-Stokes equations. The model
problem of the lid-driven cavity is described in the following section with detailed
comparisons of our solutions with the existing solutions in the literature.

FINITE DIFFERENCE APPROXIMATIONS

Consider the following steady convection—diffusion equation:
*u/0x? + 0%u/dy* + p(x, y) du/dx + q(x, v) dufdy = f(x, y). (1)

Finite difference approximations of Eq. (1) at the grid point (x, y) are obtained in
terms of the function values of u, p, ¢, and f at (x, y) and its neighbours. Assuming
a uniform grid in both x and y directions, we number the grid points (x, y),
(x+h,3), (x,y+h), (x—=hy), (xv=~h), x+hy+h), (x—hy+h),
(x—h, y—h), (x+h v—h) as 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively (see Fig. ).
In writing the finite difference approximations a single subscript “j” denotes the
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corresponding function value at the grid point numbered “;.
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Fig. 1. Computational stencil.

The usual central difference approximation of Eq. (1) at the point {x, 3 is given
by

~ 3 1.2 §7%0
Tuy 4ty + s 4ty — dug 1 + 3ol — us) + Sgohtu, —u,) = h’f,. (23
This approximation is obtained by replacing all derivatives in Eq. {1) by central dif-
ferences that have truncation errors of second order. A high accuracy approxime-

tion of Eq. (1) at the grid point (x, y) is given by

CyUy 4 Coliy F 033+ Cqlg+ Csls + Colig+ Cqlig + Cglig— Colig

=1 fi+ o+ i+ fat8f]+1 L3I pol fi— 1)+ aglfs— fal] {3

where,
ey =4+ h/4(4po+ 3p, + po— ps+ pa)+ H8[ApS + po(py — 13) + g0l 22— pa) .
cy=4+h/44qc + q; + 39, + g5~ q4) + /B[ 4g5+ polg — 95) + Golg2 — 44 1.
c3=4—h/4{dpo—p + P2+ 3ps+ pa) + hz"vg[‘wé = PolP1— D3} — ol 22— pad ]l
ca=4—n4A4q0+ g, — g2+ g5+ 3q4) + 1?/8[4q5 — polg1 — 43) — 9o(g2 — 44) s
cs= L+ A2{po+qo) + /8(q,+ P2 — g3~ Pa) + Podoh’ /4, {4}
ce=L—h2(po—qo) — h/8(q,+ P> — 43— Pu) — Dodo /4,
c7=1—=h2(po+qo)+h/8(q,+ P2 — g~ pa) + Pogoh™/4,
cg=1+h/2{po—q0) — h/8(q; + P2 — g3~ Ps) — Podoh’/4,
co=204+h*ps+qa)+h(pi— pi)+ hlg2—q.).
This approximation is of compact type as it involves only the nine grid values of
u at the point (x, y) and its eight nearest neighbors (see Fig. 1}. This approxima-
tion has a local truncation error of order 2°. Detailed derivation of this approxima-
tion is given by Gupta er al [12]. (This approximation has recently been
rediscovered by Dennis and Hudson [21].) Similar high order approximations {or

general second order elliptic equations are given in [13]. Other compac:
approximations of this type have been obtained for the Poisson equation [ i0], the
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Helmholtz equation [15], and the biharmonic equation [19]. Results of computa-
tions with a large number of test problems have been reported in the cited
papers and in each case these compact schemes are found to yield highly accurate
numerical solutions. Moreover, the accuracy improves rapidly, consistent with the
local truncation error, as the mesh is refined.

The Navier—Stokes equations representing the two-dimensional steady flow of an
incompressible viscous fluid are given in streamfunction-vorticity form as follows:

O jax*+ oMy /oyt = —( (5)
82 J0x> + 0% /dy* — Re(u 8L/dx + v 8L/dy) =0 (6)
u=ay/dy, v= —0ay/dx. (7)

Here i is the streamfunction, { the vorticity; u, v are the velocities; Re is the non-
dimensional Reynolds number.

The streamfunction equation (5) is a special case of Eq. (1). The fourth-order
compact approximation for this equation may be obtained by putting u =y, f= —(
and p(x, v)=0, g(x, y)=0 in Eq. (3):

ALY+ o+ st ] H s+ s+ + s — 200,
= —3h[{i+ 0+ 5+ + 80 (8)
The vorticity equation (6) is also a special case of Eq. (1) and the fourth-order
approximation in this case may be obtained by putting v={, f=0 and
plx, )= —Re u(x, y), q(x, y)= —Re v(x, y) in Egs. (3) and (4):
i cili—colo=0, 9)
where
ci=4—Re h/d(4uy+ 3u, +u,—us+u,)
+ (Re h)?/8[4ug + ug(uy — uz) + vo(u, — ug) ],
c;=4—Re hfd(dvo+ v, + 3v, +v5—v4) + (Re h)?/8[4v] + ug(v, — v3) + vo(v, — v4)],
¢3=4+ Re hj4(duy—uy + u, + 3us + uy)
+ (Re h)*/8[4us — uy(u; — us) — voluy — uy)],
ca=4+Re hfd(dvg+ v, — vy +v3+ 3v4) + (Re h)*/8[4vE — ug(v, —v3) — vo(v2 — v4)],
cs=1—Re h/2(uy+ vy) — Re h/8(v, + uy — 15— uy) + (Re h)? ugvy/4, (10)
ce =14+ Re h/2(ug—vy) + Re A/8(v, + ty — v3 — uy) — (Re h)? ugvy/4,
¢, =14 Re h/2(uy + vy) — Re h/8(v; + us — v3—u,) + (Re h)? uyv,y/4,
cg=1—Re h/2(uy—vy) + Re h/8(v, + ty — v3 — uy) — (Re h)* ugvy/4,
co =20+ (Re h)? (uj+ v3) — Re h(u; — u3) — Re h(v, — v,).
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The velocities u.v at a grid point (x, y) are calculated from the discrete
approximations of Eq. (7). The typical second-order central difference approxima-
tions for the velocities are:

wo= (s —Wa)2h, o= (hs— )20 (i)

High order approximations for the velocities u, v can also be defined. We 110]
earlier derived some high accuracy compact approximations for the gradients of the
solution of Poisson equations. As the streamfunction equation (5) is & Poisson
equation in ¥, high accuracy approximations for the gradients oyi/dx, /¢ can be
obtained from [10], and corresponding approximations for the velocities are given
below. (For details of the derivation, see the cited reference.) The following
approximations are compact and have a local truncation error of order A*:

o= (Y —Ya) 30+ (Ys+e— v, — )/ 120+ A0 — (0)/12
vo=Wa— Y )3h— (s — s =Yg +)/i2h+ all— {12,

MoDEL PROBLEM

As a model problem, we consider the steady flow of an incompressible viscous
fluid in a square cavity (0<x<1, 0<y<1). The flow is induced by the shding
motion of the top wall (y=1) from right to left and is described by the
Navier-Stokes equations (5)—(7). The boundary conditions are those of no slip: on
the stationary walls =0 and v=0; on the sliding wall u= —1 and v=0 {see
Fig. 2).

A large number of investigators have used this model problem to test new
schemes and solution methods (see, for example, [4-9, 11, 17, 18, 20, 22] and
references given therein). Highly accurate benchmark solutions of this problem are
available in the literature. In particular, Ghia er a/. {7] obtained highly accurate
solutions using 256 x 256 grids for 100 < Re < 10,000, Schreiber and Keller [17]
solved this problem using a continuation method on a sequence of grids including
an 180 x 180 grid; Goodrich and Soh [8] used a streamfunction algorithm on &
65 x 65 grid. These solutions facilitate comparison and assessment of new sciution
techniques. Experimental and numerical work on the three-dimensional cavity has
been reported by Freitas er al. [4, 5].

In order to solve the driven cavity problem. we replace the Navier—Stokes equa-
tions (5)-(6) by the finite difference approximations given in Egs. (8)-(10). The
velocities, defined in Eq. (7), are calculated using either the second-order
approximations (11) or the fourth-order compact approximations {12) in order to
compare the effectiveness of these approximations. The unit square is covered by a
grid of uniform mesh width 4 (h= 1/N). The discrete approximations (8), {9} are
written at each of the {N — 1) interior grid points. Zero values are prescribed for
¢ on the boundary; vorticity { on the boundary 15 obtained using the Jeunsen



348 MURLI M. GUPTA

Y T
u=-1, v=0
(0,1) |==m=m—-= R o o et (1,1)
Primary Vortex
vC
u=0 u=0
v=0 v=0
uve DVC
________________________________________________ -
(0,0) u=0, wv=0 (1,0) x

FiG. 2. Driven cavity problem.

formula [11, 16]: on the stationary walls, we define (o= (—8yr, + ,)/2h% on the
sliding wall y=1, we define {,=(—8¢, +,)/2h* + 3/h. Here the subscript “0”
denotes a grid point on the boundary; the points “1,” “2” lie inside the flow region
such that the points 0, 1, 2 all lie on the straight line normal to the boundary (see
Fig. 3). These approximations have local truncation error of second order. Higher
order approximations could also be defined for obtaining boundary values of {; it
is anticipated that the impact on the accuracy of the computed solutions would be
marginal. These and other boundary approximations for vorticity were studied in
detail by Gupta and Manohar [11] (see also Gajjar [6]).

An inner—outer iteration procedure is utilized to obtain the numerical solutions.
At each outer iteration, the linear systems from the discrete streamfunction and vor-
ticity equations are solved iteratively. We solved these linear systems using point-
SOR iteration with the relaxation parameters 1.7 and 1.2, respectively. The inner
iterations are allowed no more than a present number (usually 10) of iterations. As
the fourth-order approximations of the vorticity equation are stable, the inner
iterations are convergent for all values of Re.

Fi1G. 3. Computational stencil for wall vorticity.
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TABLE I

Representative Parameters of Driven Cavity {Fourth-Order Velocizies, 41 x 41 Mesh}

Primary vortex Secondary vortices
Re Yyve cve Yuve Yove <050
t 0.100027 3.33906 —0.2091( -5 ~0.2100¢t —3) 5.8637
10 0.100029 3.35029 —0.2212( =5 —~0.201 (-5 5.8686
100 0.103463 3.28572 —0.1245(—4) 04747 =) £.5503
400 0.112814 2.30247 —0.6512(—3) —~0.14521 —-4) 10.08356
1000 0.112492 2.02763 —0.1823(-2) ~0.1491¢ -3 159475
2000 0.099586 2.24579 —0.2849( —4) —~0.75971 — 41 18.5750

02091 ~5)= —0.2099t x 10>,

We obtained numerical solutions of the driven cavity problem for Reynolds num-
bers ranging between 1 and 2000. The solutions were obtained on a 21 x 21 grid
(h=135) and a 41 x41 grid (h=35). All iterations were started with zero initial data
and were terminated when the maximum difference between successive approxima-
tions of ¥, { was smaller than 107 The computations were carried out on an
iIBM 4381 at The George Washington University and or a CRAY XMP24 at
MNASA Lewis Research Center.

In Table I, we present the representative parameters of the driven cavity problem
for the 41 x 41 grid, obtained using the fourth-order approximations {12} for the
velocities. This table contains the values of i, ¢ at VC (VC = center of the primary
vortex ). the values of y at the centers of the secondary vortices in the lower cornsrs,
and the value of { at the mid-point (0.5,1) of the moving wall. These parameters are
the major indicators of the accuracy of the compuied solutions [117 and are
quoted by most authors.

We also computed numerical solutions using the second-order approximations
{11) for the velocities. The solutions for Re = 1,10 were found to be almost identical
with those obtained using the fourth-order approximation for the velocities. The
representative parameters using second-order velocities for Re > 100 are givan in
Table I

TABLE 1L

Representative Parameters of Driven Cavity (Second-Order Velocities, 41 x 41 Mesh)

Primary voriex Secondary vortices
Re Yye Cve Yuve ¥ove 205,55
100 6.103263 3.28369 —0.1241(—4) —0.1742(—5) 6.564:
400 D.111151 2.29561 —0.7004( -3y —0.1367( -4 15.1538
1000 8.107392 2.01499 —0.2108{-2) —3.15384{—3 162482

2000 0.088152 2.37916 —0.1368( —4} —0.7973( —4) 20.6828
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COMPARISON WITH EXISTING SOLUTIONS

We now present a comparison of our solutions with the high accuracy solutions
available in the literature (see, for example [7, 8, 17]). Qualitatively, our solutions
exhibit the well-known features of the driven cavity, including the main vortex in
the central part of the cavity and secondary vortices in the lower corners. Figures
4-7 present the streamfunction and vorticity contours for Re=1 and 100 using the
O(h*) approximation for velocities. Figures 8-11 contain the streamfunction and
vorticity contours for Re=400 using O(h?) and O(k*) approximations for
velocities. Figures 12-15 contain similar contours for Re = 1000. It is apparent that
our streamfunction and vorticity contours are consistent with the published data
(5, 7, 8, 17, 18].

Quantitatively, our solutions using the 41 x4l mesh compare very well with
the highly accurate benchmark solutions available in the literature. In Table III,
we compare the values of streamfunction ¢ at VC and the location of VC with
the results from [7, 8, 17] as applied to the driven cavity configuration shown in
Fig. 3. We note that the locations of the vortex center VC using fourth-order
approximations for the velocities are within the cellwidth 4 (4=0.025) of the
reference data.

Taking the results of Ghia et al. [7] as the benchmark solutions, we compute the
relative errors of the i values at VC for the solutions obtained by us, by Goodrich
and Soh[8], and by Schreiber and Keller [17]. This data, given in Table IV,
shows that our solutions obtained using fourth-order approximations for the
velocities are either comparable in accuracy or are somewhat more accurate than
the other results.

The values of streamfunction  at the center of the secondary vortex in the
upstream corner UVC (in bottom left corner of the cavity, see Fig. 3) are given in

FiG. 4. Streamlines for Re =1 (fourth-order velocity).



FiG. 5. Equivorticity curves for Re =1 (fourth-order velocity}.
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FiG. 7. Equivorticity curves for Re = 100 {fourth-order velccity).
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FiG. 8.

FiG. 9.

FiG. 10. Streamlines for Re =400 (second-order velocity).
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rF1G. “1.  Equivorticity curves for Re =400 {second-order velocity}.

FiG. 12. Streamlines for Re = 1000 (fourth-order valocity}).

Fi6. 13. Equivorticity curves for Re = 1000 ifourth-order velocity}.
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Fic. 14. Streamlines for Re = 1000 (second-order velocity).

Table V. We also give the reference data from [7, 8, 177 for comparison. The values
of this parameter obtained using the fourth-order velocity approximations are much
more accurate than those obtained using the second-order velocity approximations;
at large values of Re, the improvement becomes even more pronounced.

In Table VI, we given the values of { at VC and compare with the available data.
The agreement with the reference data is quite good even though the location of VC
substantially effects the values of this parameter; smaller values of # would locate
VC more accurately and give even better agreement in the { values at VC. In
Table VII, we give the values of { at the mid-point of the sliding wall y =1 and the
only comparison data available in [ 7].

Fic. 15. Equivorticity curves for Re = 1000 (second-order velocity).
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TABLE 1II

Vaiue of ¢ at VC and Location of VC (VC = Center of Primary Vortex)

Second-order Fourth-order Reference
Re velocities velocities data
1 0.100027 0.100027 0.10606 (172
(0.5,0.775) (0.5, 0.775) (0.5.0.7667)
100 0.103263 0.103463 0.103423 71
{0.375.0.75) (0.375.0.75) (0.3828, 0.7344)
0.10330 7177
400 0.111152 0.112814 0.113909 71
{0.45, 0.625) (0.45, 0.60) 10.4453, 0.6035}
0.11198 8]
11297 {177
100C 0.107392 0.111492 0.117929 {73
{0.4753, 0.600) (0.475.0.575) £0.4687. 0.5625)
9.11359 rs]
0.11603 {1731
TABLE IV
Relative Error in the Value of  at VC
Second-order Fourth-order Reference
Re velocities (%) velocities (%) data (%)
100 0.15 0.04 0.2 [17]
400 2.4 0.96 0.82 [17]
17 r8]
1000 89 5.4 1.6 [17]
3.7 781
TABLE V
Value of ¢ at UVC (UVC = Center of Upstream Corner Vortex)
Second-order Fourth-order Reference
Re velocities velocities data
1 —-0.2091(-5) —0.2091(—-5) —0.247 (-5} [173
160 —0.1241{—4) —0.1245(—4) —0.1254 —4) 73
—0.1320( -4} {177
400 ~0.7004( —3) —0.6512(—3) —0.6424(-3) (71
—0.5749(—-3) 81
—0.6440( - 3) [7
1000 —0.2108(—2) —0.1833(-2) —0.1751{-2) {77
—0.1852( -2} [8]
—01700( -2) 173
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TABLE VI

Value of { at VC

Second-order Fourth-order Reference
Re velocities velocities data
1 3.339 3.339 3.232 [17]
100 3.284 3.286 3.167 [7]
3.182 [17]
400 2.296 2.302 2.295 [7]
2.281 [17]
1000 2.015 2.028 2.050 [7]
2.026 [17]
TABLE VII
Value of { at (0.5,1)
Second-order Fourth-order Reference
Re velocities velocities data
1 5.8637 5.8637 —
100 6.5641 6.5505 6.5745 [7]
400 10.1538 10.0856 10.0545 [7]
1000 16.2462 15.9470 14.8901 [7]1
TABLE VIII
Extreme Value of Horizontal Velocity u at Centerline x =0.5
near the Bottom Wall y =0
Second-order Fourth-order Reference
Re velocities velocities data
1 0.2065 0.2070 —
100 0.2212 0.2223 0.2109 [7]
(4.9%) (5.4%
400 0.3235 0.3288 0.3273 [7]
(1.2%) (0.46%) (2.2%) [8]
1000 0.3473 0.3596 0.3829 [7]
(9.3%) (6.1% (4.6%) [8]
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TABLE IX

Extreme Value of Vertical Velocity v at Centerline y =93.5 near the Left Wall x=0

Second-order Fourth-order Reference

Re velocities velocities data

t —-0.1678 —0.1685 —
100 —0.2263 —0.2289 —(.2453 (7]

{7.8%%) (6.7%)

400 —0.4022 —0.4203 —~0.4499 71
(10.6%%) {6.6%) 11.6%) [81
1000 —-0.4188 —0.4522 —~(.5155 {71
(18.7%) (12.3%0) (3.9%} [8]

w3
g1

In Table VIIL, we give the extreme values of the horizontal velocity « at the
centreline x = 0.5 near the bottom wall y =0. Data from [7] and relative deviation
of our results from this data is given for Re > 100: also given is the relative error
data from [8] for Re=400 and 1000. Similar data is given in Table IX for the
extreme values of the vertical velocity v at the centreline y = 0.5 near the left wall
x=0. We observe that our extreme u values {Table VIII) are comparable 1o those
of [8] although our extreme v values (Table IX) are somewhat more erroneous
than those of [37].

in Table X, we compare the values of i and { at VC obtained with the 21 x 21
and 41 x 41 grids and note that the values of these parameters rapidly approach the
benchmark values when the grid is refined. The rate of convergence is somewhat
slower when Re is large. It is expected that on further grid refinement, the selutions
for large Reynolds numbers would also exhibit rapid convergence.

TABLE X

Comparison of 21 x 21 and 41 x 41 Sclutions

21 x 21 41 x 43 Reference
Re solution solution data
Yo 1 0.0999954 0.100027 0.10006 YA
100 0.103168 0.103463 0.103422 {73
400 0.101073 0.112814 0.113909 7]
1000 0.084237 0.111492 0.117929 r7
ove 1 3.0294 3.3361 3.232 [t73
100 31112 3.2857 3.1665 [71
400 2.3784 2.3025 2.2947 777
1000 3.0194 20276 2.0497 71

Note. ¢, ¢ at the center of the primary vortex (fourth-order velocities).
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DiscussioN

We note that for moderate values of the Reynolds number Re, the numerical
solutions obtained using our high order compact difference approximations are
highly accurate and compare well with the benchmark solutions available in the
literature. This fact is remarkable also due to the fact that our solutions are
obtained with a relatively coarse grid (4= 3), whereas the benchmark solutions
have been obtained with fine grids (with 4 as small as & = 5i).

In Table XI, we give the number of iterations needed to converge to the required
tolerance. As expected, for larger values of Re the convergence is slower; however,
the convergence is faster with the fourth-order velocity approximations than with
the second-order velocity approximations. We also give the CPU execution times
for Re=1000, 2000 on a CRAY XMP24 in this table. With Re = 1000, the con-
vergence with fourth-order velocity approximations required almost 13% less CPU
time than with the second-order velocity approximations; with Re =2000 the dis-
crepancy increased even further. Thus, the numerical computations using the
second-order velocity approximations have slower convergence and produce less
accurate results than the computations using the fourth-order velocity approxima-
tions.

We conclude that the fourth-order approximations for the Navier—Stokes equa-
tions do provide highly accurate solutions when coupled with appropriate high
order approximations for the velocities. The rate of convergence of the outer itera-
tions slows down considerably when computing for larger values of Re. This is an
on-going difficulty with all solution methods. We are currently investigating alter-
native methods such as the multigrid and multilevel techniques [7, 20, 227 to
obtain high accuracy driven cavity solutions for much larger values of Re and to
solve other problems of viscous fluid flow. The results of these investigations shall
be reported in the future.

TABLE XI

Number of Outer Iterations, CPU Execution Times to
Converge to 10~* (CRAY XMP24)

Second-order Fourth-order
Re velocities velocities
1 157 157
100 353 353
400 516 509
1000 1248 ( 148 5s) 1040 (127 s)

2000 >6200 (>645s) 4266 (482 s)
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