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In recent jears we have developed high accuracy finite difference approximations for partial 
differential equations of elliptic type, with particular emphasis on the con~ectjon~-diffusion 
equation. These approximations are of compact type, have a !ocal truncation error of fourth 
order, and allov, the use of standard iterative schemes to solve tte resulting systems of 
aigebraic eqaations. In this paper, we extend these high accuracy approximations to the so& 
tion of Navier~-Stokes equations. Solutions are obtained for the mode! problem of drive?. 
cavity and are compared with solutions obtained using other approximariocs and i!lose 
obtained by other authors. It is discovered that the high order approximations do indeed 
produce high accuracy solutions and have a potential for xe in solving important problems 
of Cscous fluid floss. F 1991 Academic Press. Inc. 

INTRODUCTION 

The basic model for the fluid dynamics phenomena representing two- and three- 
dimensional flows of an incompressible viscous fluid is given by the Navies-Stokes 
equations that represent the conservation of mass, momentum, and energy. These 
eqiuations are highly nonlinear and are very diffkuit to solvei especially when the 
approximate solutions are required to have a high accuracy. A related problem is 
that of obtaining highly accurate solutions of the convection-diffusion equation, 
especially when convection is the dominating phenomena. 

Prior to the last decade, many researchers examined a number of firss- and 
second-order finite difference and finite element methods that were accurate acd 
stable. In the area of finite difference methods, it was discovered that although 
centrai difference approximations were locally second-order accurate they often 
suffered from computational instability and the resulting solutions exhibited norl- 
physical oscillations. The upwind difference approximations were computationally 
stable, akhough only first-order accurate, and the resulting solutions exhibited the 
effects of artificial viscosity. The second-order upwind methods were no better and 
the higher order finite difference methods of conventional type were compuea- 
tionaliy inefficient. 

An exception has been found in the high order finite difference schemes of com- 
?act type that are computationally eff’cient and stable and yield high!y accurate 
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numerical solutions at least for the linear and quasilinear partial differential equa- 
tions. Simplest version of such compact schemes is given for the Poisson equation 

which can be discretized at a grid point (x, v) by a nine-point finite difference 
approximation: 

(See Fig. 1 for the computational stencil.) This approximation was named 
Mehrstellenverfahren by Collatz [3] (see also [lo]). It has a local truncation error 
of order h4 and is an approximation of compact type as it involves only the eight 
nearest neighbours of the point (x, J). This type of approximations have been 
obtained for other elliptic equations by many researchers: the Hodie schemes of 
Lynch and Rice [14] (see also [Z]), the OCI schemes of Berger et al. [ 11, and the 
SCHOS schemes of Gupta et a/. [12, 131 all reduce to the above difference 
approximation when applied to the Poisson equation. Similar compact schemes of 
order h6 have also been obtained [lj]. 

The compact schemes of Gupta et al. (called SCHOS in the earlier papers) were 
applied to the convection-diffusion equations in particular and were found to yield 
high accuracy when applied to a large number of test problems including problems 
of convection-dominated flows [12]. In this paper, we extend these finite difference 
schemes to the Navier-Stokes equations. As a test of this method, we solve the 
model problem of a lid driven cavity for small to moderate values of the Reynolds 
number and compare our numerical solutions with the highly accurate benchmark 
solutions available in the literature. We find that our method yields high accuracy 
even though we use a relatively coarse grid. 

In the next section we describe the fourth-order compact difference schemes for 
the convection+liffusion equation and for the Navier-Stokes equations. The model 
problem of the lid-driven cavity is described in the following section with detailed 
comparisons of our solutions with the existing solutions in the literature. 

FINITE DIFFERENCE APPROXIMATIONS 

Consider the following steady convection-diffusion equation: 

a3qa~2 + ak/ay2 + P(-Y-, ,') au/ax + 4(x, ~1 du/ay==f(n, ~7). (1) 

Finite difference approximations of Eq. (1) at the grid point (x, ~1) are obtained in 
terms of the function values of U, p? q, andf’at (x, y) and its neighbours. Assuming 
a uniform grid in both .Y and y directions, we number the grid points (x, I’), 
(x + h, y), (x, y + h), (x-h, y), (x, .I’- h), (x + h, y + h), (x-h, 2’ + h), 
(x-h, v--/r), (x+/z, ~1-1~) as 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively (see Fig. I). 
In writing the finite difference approximations a single subscript ‘y” denotes the 
corresponding function value at the grid point numbered ‘7.” 



HIGH ACCURACY NAVIER-STOKES SOL\l3? 

I I i 
---+----2-v-~--- 

FIG. 1. Computational stend. 

The usual central difference appreximation of Eq. (1) at the point (CC> ~7) is given 
by 

[zll 4 u, + 113 + u4 - 4u,] + +pohiu, - u3 1 3 &)h~\zf, - Lf‘$) = i72f-j~ i3) 

‘This approximation is obtained by replacing all deri.vatives in Eq. ( 1) by central dir? 
ave truncation errors of second order. A high accuracy approximr- 

tion of Eq. (I) at the grid point (x, ~1) is given by 

Cl = 4 i- iZi’4(4& + 3p, + pz - p3 + p4) + h’,:8[4pi + po(pl - p3) + q,(p, - Pl)]. 

C? = 4 + 11/4(4& + q, + 3q, + q3 - q4) + h’/8[4q; + po(qI - q3) + q&q2 - qjlJ* 

c3 = 4 - l?.i4(4P, - p, + p2 + 3p, + p4) + hyl[4& - po(pI - p3: - qolp~ - p,,j; 

c4=4--~4(4gO+qi-q,+q3+ 3q4)+h2i!8[4q~-p,(q,-q31-qq,(q,-g,)I, 

cs = 1 + @qp, -F 40) + h/8(q, + pz - qJ - p;4) +poq0h’,‘4, tL, i s 0, 

cc= 1 -hi2(p,-q,)-tz!81q,fp2-q,-p,)-Poqoh2i4, 

c-i = I- GYP, -I- qo) + h,‘8(q, + pz - qr* - p4) +poqoh’i4, 

:;s z 1+ &Qip, - go) - 4’8(q, + pz - q3 - ~1) -poq&%, 

c() = xl+ k’:p; + 4;) + h(p, - p3) + h(q, - q4). 

This approximation is of compact type as it involves only the nine grid valaes of 
5: at the point (x, 2’) and its eight nearest neighbors (see Fig. 1). This approxima- 
tion has a local truncation error of order h3. Detailed derivation of this approxima- 
tion is given by Gupta et ul. [ 121. (This approximation has recently been 
rediscovered by ennis and Hudson [21].) Similar high order approximations for 

general second order elliptic equations are given in [13]. Other eompac: 
approximations of this type have been obtained for the Poisson equation [IO], the 
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Helmholtz equation [lj], and the biharmonic equation [ 191. Results of computa- 
tions with a large number of test problems have been reported in the cited 
papers and in each case these compact schemes are found to yield highly accurate 
numerical solutions. Moreover, the accuracy improves rapidly, consistent with the 
local truncation error, as the mesh is refined. 

The Navier-Stokes equations representing the two-dimensional steady flow of an 
incompressible viscous fluid are given in streamfunction-vorticity form as follows: 

a=t)/ax= + a=lj/a]f= = -[ (5) 

i7’ilax2+a2iYl~y2-Re(u ailax+ v agaJg=O (6) 

u=a*/aJy, v= -all/lax. (7) 

Here $ is the streamfunction, < the vorticity; U, tl are the velocities; Re is the non- 
dimensional Reynolds number. 

The streamfunction equation (5) is a special case of Eq. (1). The fourth-order 
compact approximation for this equation may be obtained by putting u = +, f = -[ 
and p(x, y) = 0, q(x, y) = 0 in Eq. (3): 

4[I~,+~,+IcI,+~,1+~j+~,+~,+~,-20~, 

= -$h2[[l + i2 + ij + i4 + S&l. (8) 

The vorticity equation (6) is also a special case of Eq. (1) and the fourth-order 
approximation in this case may be obtained by putting II = [, f = 0 and 
p(x, y) = -Re U(X, y), q(x, y) = -Re U(S, y) in Eqs. (3) and (4): 

ifI ciii-&=o, (9) 

where 
cl = 4 - Re h/4(4u0 + 3u, + zd2 - uj + uq) 

+ (Re !~)~/8[4ui + uO(uL - u3) + tlO(uz - Us)], 

c2 =4- Re h/4(4~, + L’, + 3u2 + ~7~ - 21~) + (Re 1?)~/8[4vg + ~~(0, - uj) + u,(v, - v,)], 

c3 = 4 + Re k/4(4u, - u1 + u2 + 3u, + K,) 

+ (Re h)2/8[4zdi - uO(ul - uj) - uO(uz - uj)]. 

c4 = 4 + Re h/4(411, + v, - v2 + v3 + 30~) + (Re hj*/8[4vi - uo(u, - v3) - ug(u2 - v,)], 

cj = 1 - Re h/2(uo + vo) - Re h/8(v, + u2 - v3 - uq) + (Re h)= uovo/4, (10) 

c6 = 1+ Re h/2(uo - u,,) + Re h/8(v, + uz - v3 - K,) - (Re h)* uouo/4, 

c, = 1 + Re 1z/2(u0 f uO) - Re h/8(v, + u2 - u3 - u4) + (Re h)’ u,v,/4, 

c8 = 1 - Re h/2(u, - vo) + Re h/8(v, + u2 - vg - uq) - (Re A)’ u0u,/4, 

co = 20 + (Re /I)’ (u; + vi) - Re h(u, - Us) - Re h(v, - vj). 
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The velocities II. o at a grid point (5, y) are calculated from the discrete 
appsoximaiions of Eq. (7). The typical second-order central ifference approxima- 
tions for the velocities are: 

High order approximations for the velocities U, ~1 can also be defined. We [IO] 
earlier derived some high accuracy compact approximations for the gradients oE the 
soiution of Poisson equations. As the streamfunction equation (5) is a Poisson 
equation in il;, high accuracy approximations for the gradients &//3x, i;$/?.:* can be 
obtained from [IO], and corresponding approximations for the velocities are given 
beiow. (For details of the derivation, see the cited reference.) The following 
approximations are compact and have a locai truncation error of order h”: 

MODEL PRoBmhi 

As a model problem, we consider the steady flow of an incompressible viscous 
fluid in a square cavity (0 d x d 1, 0 < 4’~ 1). The flow is induced by the sliding 
motion of the top wall (y = 1) from right to left and is described by the 
Navier-Stokes equations (.5)-(7). The boundary conditions are those of no slip: on 
the stationary walls u = 0 and ~7 = 0; on the sliding wall u = -1 and u = 0 I see 
Fig. 2). 

A large number of investigators have used this model problem to test new 
schemes and solution methods (see, for example, [4-g, I!, 17, 18, 20, 221 and 
references given therein). Highly accurate benchmark solutions of this problem are 
available in the literature. In particular, Ghia er nl. [7] obtained highly accm-ate 
solutions using 256 x 256 grids for lOO< Re 6 10,000. Schreiber and Keller [17] 
solved this problem using a continuation method on a sequence of grids inclu 
an 180 x 180 grid; Goodrich and Sob [S] used a streamfunction algorithm on a 
65 x 65 grid. These solutions facilitate comparison and assessment of new soiurion 
techniques. Experimental and numerical work on the three-dimensional cavity %as 
been reported by Freitas et al. [4, 51. 

In order to solve the driven cavity problem, we replace the Navier-Stokes equa- 
tions (5)-(6) by the finite difference approximations given in Eqs. (8 j-(ZOj. The 
velocities, defined in Eq, (7), are calculated using either the second-order 
approximations (11) or the fourth-order compact approximations (12) in order to 
compare the effectiveness of these approximations. The unit square is covered by a 
grid of uniform mesh width h (h = l/N), The discrete approximations (S), (9) are 
written at each of the (N- I)’ interior grid points. Zero values are prescribed for 
rb on the boundary; vorticity < on the boundary IS obtained using the Jensen 
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FIG. 2. Driven cavity problem. 

formula [ 11, 161: on the stationary walls, we define Co = (-X$, + ti2)/2h2; on the 
sliding wall y = 1, we define co = ( - 8tiI + a,b2)/2h2 + 3/h. Here the subscript ‘9” 
denotes a grid point on the boundary; the points “1,” “2” lie inside the flow region 
such that the points 0, I,2 all lie on the straight line normal to the boundary (see 
Fig. 3). These approximations have local truncation error of second order. Higher 
order approximations could also be defined for obtaining boundary values of [; it 
is anticipated that the impact on the accuracy of the computed solutions would be 
marginal. These and other boundary approximations for vorticity were studied in 
detail by Gupta and Manohar [ 111 (see also Gajjar [6]). 

An inner-outer iteration procedure is utilized to obtain the numerical solutions. 
At each outer iteration, the linear systems from the discrete streamfunction and vor- 
ticity equations are solved iteratively. We solved these linear systems using point- 
SOR iteration with the relaxation parameters 1.7 and 1.2, respectively. The inner 
iterations are allowed no more than a present number (usually 10) of iterations. As 
the fourth-order approximations of the vorticity equation are stable, the inner 
iterations are convergent for all values of Re. 

I I I I -----3-----2-----1-----o Wall 
I I I I 

FIG. 3. Computational stencil for wall vorticity. 
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TABLE I 

Representative Parameters of Driven Cavity {Fourth-Order Veioci:ies. al x 11 Mesh) 

Primary vortex Secoiidary vortices 

Re 4 kc i vc $ LTVC ~DVC ;(o.s,l: 

I 0.100027 3.33906 -0.2091( -5)” -0.2103!, -~5) 5.5637 
10 O.!OOo29 3.35029 -0.2112( -5) --0.20!1( -51 _ I 5.8686 

100 0.103463 3.28572 -O.i245(-4) m-0.!747(mm5) 6.550.i 

400 0.112814 2.30247 -0.6512(-31 -0.1452: -4) 100856 
1000 0.11:492 2.02763 -0.1823( -2) -O.i491( -31 i j.9170 

2000 0.099586 2.24579 -0.2849(-4) -0.75975 -4 E P8.5W " 

c -0209!(-5)= -0.2099!x 1w5. 

We obtained numerical solutions of the driven cavity problem for Reynolds num- 
bers ranging between 1 and 2000. The solutions were obtained on a 21 x 21 grid 
(/I= &, and a 41 x 41 grid (h = &). All iterations were started with ZXQ initial &:a 
and were terminated when the maximum difference between successive approxima- 
tions of $, i was smaller than lo-“. The computations were carried out on an 

M 4381 at The George Washington University and o-6‘ a CRAY XMP24 a~ 
NASA Lewis Research Center. 

In Table I, we present the representative parameters of the driven cavity probkm 
for the 41 x 41 grid, obtained using the fourth-order approximations (12) for 24: 

velocities. This table contains the values of $I. ; at YC gVC = center of the primary 
vortex). rhe values of $ at the centers of the secondary vortices in rhe lower corn~s, 
and the value of ,Y at the mid-point (OS,l) of the moving wall. These parameters are 
the majur indicators of the accuracy of the computed solutions [I 11 and are 
quoted by most authors. 

We also computed numerical solutions using the second-order approximations 
( i ! ) for the velociiies. The solutions for Re = 1,lG were found to be almcst identical 
with VEX obtained using the fourth-order approximation for the velocities. The 
representative parameters using second-order velocities fog Re 2 IO0 are giver.. in 
Table I:. 

TABLE II 

keprescr?tative Parameters of Driven Cali:y (Second-Order Velocities, 41 x 4.1 Mesh) 

Re 

Primary vortex Secondary vortices 

*x;c ivc * uvc $n\.r 

100 0.103253 3.28369 -0.1?41( -4) -&1742(-5) 6.5641 

400 0.111151 2.29561 -C.7004( -3) -0.13671 -4) IO.1538 

loo0 0.107392 2.01499 -0.2108(-3) -3.i384( -3) !6.2&I 

2QOQ 0.088!52 2.31916 -&1368(-S) -G.?973( -4) 20.6838 
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COMPARISON WITH EXISTING SOLUTIONS 

We now present a comparison of our solutions with the high accuracy solutions 
available in the literature (see, for example [7, 8, 171). Qualitatively, our solutions 
exhibit the well-known features of the driven cavity, including the main vortex in 
the central part of the cavity and secondary vortices in the lower corners. Figures 
4-7 present the streamfunction and vorticity contours for Re = 1 and 100 using the 
0(/z”) approximation for velocities. Figures 8-11 contain the streamfunction and 
vorticity contours for Re=400 using 0(h2) and 0(/z”) approximations for 
velocities. Figures 12-15 contain similar contours for Re = 1000. It is apparent that 
our streamfunction and vorticity contours are consistent with the published data 
[S, 7, 8, 17, 181. 

Quantitatively, our solutions using the 41 x 41 mesh compare very well with 
the highly accurate benchmark solutions available in the literature. In Table III, 
we compare the values of streamfunction tj at VC and the location of VC with 
the results from [7, 8, 171 as applied to the driven cavity configuration shown in 
Fig. 3. We note that the locations of the vortex center VC using fourth-order 
approximations for the velocities are within the cellwidth /z (12 =0.025) of the 
reference data. 

Taking the results of Ghia et al. [7] as the benchmark solutions, we compute the 
relative errors of the $ values at VC for the solutions obtained by us. by Goodrich 
and Soh[8], and by Schreiber and Keller [17]. This data, given in Table IV, 
shows that our solutions obtained using fourth-order approximations for the 
velocities are either comparable in accuracy or are somewhat more accurate than 
the other results. 

The values of streamfunction $ at the center of the secondary vortex in the 
upstream corner UVC (in bottom left corner of the cavity, see Fig. 3) are given in 

P 

FIG. 4. Streamlines for Re = 1 (fourth-order velocity). 
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FIG. 5. Equivorticity curves for Re = 1 (fourth-order velocity). 

FIG. 5. Sweamlines for Re = 100 (fourth-order velocity). 

FIG. 7 
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Equivorticity curves for Re = 100 ;foueth-order relccity ) 351 
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8. 8. Streamlines for Ke = 4OU (fourth-order velocity). Streamlines for Ke = 4OU (fourth-order velocity). 
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Frti. 9. Equivorticity curves for Re = 400 (fourth-order velocity). 

FIG. 10. Streamlines for Re =400 (second-order velocity). 
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FIG. 11. Equivorticity curves for Re = 400 (second-order I elociry ). 

FE. 12. Streamlines foe Re = 1000 (fourth-order vdocityb 
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FIG. 14. Streamlines for Re = 1000 (second-order velocity). 

Table V. We also give the reference data from [7, 8, 171 for comparison. The values 
of this parameter obtained using the fourth-order velocity approximations are much 
more accurate than those obtained using the second-order velocity approximations; 
at large values of Re, the improvement becomes even more pronounced. 

In Table VI, we given the values of (’ at VC and compare with the available data. 
The agreement with the reference data is quite good even though the location of VC 
substantially effects the values of this parameter; smaller values of h would locate 
VC more accurately and give even better agreement in the [ values at VC. In 
Table VII, we give the values of (’ at the mid-point of the sliding wall y = 1 and the 
only comparison data available in [7]. 

FIG. 15. Equivorticity curves for Re = 1000 (second-order velocity). 
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TABLE III 

Value of $ at VC and Location of VC (VC = Center of Primary Vortex) 

Re 
Second-order Fourth-order 

velocities velocities 
Reference 

data 

1 0.100027 0.100027 O.lOGO6 117; 
(0.5, 0.775) (0.5,0.77j) (0.5. 0.7667 j 

100 0.103263 0.103463 0.1034’3 171 
(0.375.0.75) (0.375. 0.75) (0.3928. 0.7344) 

c.:o330 ;171 

400 0.111152 0.115814 0.1;3909 CT! 
(0.45,0.625) (0.45, 0.60) (0.4453,0.6055) 

0.11178 !81 
0.11297 It7; 

1000 0 107392 0.111492 0.117329 c71 
(0.475.0.600) (0.475. 0.575 j i0.4687. 0.5625 ) 

3.11359 
0.11603 

TABLE tV 

Relative Error in the Value of $ at VC 

Re 
Second-order 
velocities ( ?k ) 

Fourth-order 
velocities ( 9/b j 

Reference 
data (?fo ) 

100 0.15 0.04 0.12 j17] 
400 2.4 0.96 0.82 j17] 

I.7 l?Ii 
1000 8.9 5.4 1.6 [I71 

3.7 LB] 

TABLE V 

Value of $ at UVC (UVC = Center of Upstream Corner Vortex) 

Re 
Second-order 

velocities 
Fourth-order 

velocities 
Reference 

data 

1 -0.2091( -5) -0.2091(-5) -0.247 i -51 j17j 
100 -0.1241(-4) -O.LZSj(-4) -0.1254(-4) [7j 

-0.1320( -4: 117; 

400 -0.7004( - 3) -0.6512(-33 -0.6424( - 3) 171 
-0.5749( -3) ISI 
-0.6440( - 31 [I73 

1000 -0.2108(-21 -0.1833( -2) -0.1751! -2) ;7] 
-0.1892(-2: I31 
-0 !700( -2) 1171 
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TABLE VI 

Value of [ at VC 

Re 
Second-order 

velocities 
Fourth-order 

velocities 
Reference 

data 

1 3.339 3.339 3.232 Cl71 
100 3.284 3.286 3.167 c71 

3.182 [171 
400 2.296 2.302 2.295 c71 

2.28 1 Cl71 
1000 2.015 2.028 2.050 c71 

2.026 r171 

TABLE VII 

Value of ; at (OS,1 ) 

Re 
Second-order 

velocities 
Fourth-order 

velocities 
Reference 

data 

1 5.8637 5.8637 

100 6.5641 6.5505 6.5745 c71 
400 10.1538 10.0856 10.0545 c71 

1000 16.2462 15.9470 14.8901 c71 

TABLE VIII 

Extreme Value of Horizontal Velocity u at Centerline x = 0.5 
near the Bottom Wall J’ = 0 

Re 
Second-order 

velocities 
Fourth-order 

velocities 
Reference 

data 

1 0.2065 0.2070 - 

100 0.2212 0.2223 0.2109 171 
(4.90/b ) (5.4%) 

400 0.3235 0.3288 0.3273 c71 
(1.246) (0.4696) (2.2%) PI 

1000 0.3473 0.3596 0.3829 c71 
(9.3%) (6.1%) (4.6%) PI 
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TABLE IX 

Extreme Value of Vertical Velocity r at Centerline 1’ = 3,5 near the Left Wall 9 = 0 

Re 
Second-order 

velocities 
Fourth-order 

velocities 
Reference 

data 

1 -0.1678 -0.1685 

100 -0.2263 -0.2289 - 0.2453 c71 
(7.8% ) (6.7%) 

400 -0.4022 -0.4203 -0.4449 e71 
(10.6%) (6.644 ) (L.6?b ) [8! 

lOGO -0.4188 -0.45” ML -6.5155 [7: 
(18.7%) (12.3’!,0) (3.!Xo) 181 

In Table VIII, we give the extreme values of the horizoctal velocity ii at the 
centreline s = OS near the bottom wall J’ = 0. Data from [7j and relative deviation 
of our results from this data is given for Re 2 100; also given is the relative error 
data from [S] for Re = 400 and 1000. Similar data is given in Table IX for ehc 
extreme values of the vertical velocity ~7 at the centreline I’= 0.5 near the iefi wa!I 
x = 0. We observe that our extreme u values (Table VIII j are comparable to those 
of [IS] although our extreme 17 values (Table IX) are somewhat more erroneous 
than those of [S]. 

In Table X, we compare the values of II/ and < at VC obtained with the 21 x ?I 
and 41 x 41 grids and note that the values of these parameters rapidly approach the 
benchmark values when the grid is refined. The rate of convergence is somewh.at 
slower when Re is large. It is expected that on further grid refinement, the solutions 
for large Reynolds numbers would also exhibit rapid convergence. 

TABLE X 

Comparison of 21 x 21 and 41 x 41 Solutions 

Rs 

21 x 21 
solution 

41 x 41 
solution 

Reference 
data 

iu’o IC. ?i/, ; at the center OF the primary vortex (fourth-order velocities). 
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DISCUSSION 

We note that for moderate values of the Reynolds number Re, the numerical 
solutions obtained using our high order compact difference approximations are 
highly accurate and compare well with the benchmark solutions available in the 
literature. This fact is remarkable also due to the fact that our solutions are 
obtained with a relatively coarse grid (h = $), whereas the benchmark solutions 
have been obtained with fine grids (,with h as small as 12 = &). 

In Table XI, we give the number of iterations needed to converge to the required 
tolerance. As expected, for larger values of Re the convergence is slower; however, 
the convergence is faster with the fourth-order velocity approximations than with 
the second-order velocity approximations. We also give the CPU execution times 
for Re = 1000, 2000 on a CRAY XMP24 in this table. With Re = 1000, the con- 
vergence with fourth-order velocity approximations required almost 13% less CPU 
time than with the second-order velocity approximations; with Re = 2000 the dis- 
crepancy increased even further. Thus, the numerical computations using the 
second-order velocity approximations have slower convergence and produce less 
accurate results than the computations using the fourth-order velocity approxima- 
tions. 

We conclude that the fourth-order approximations for the Navier-Stokes equa- 
tions do provide highly accurate solutions when coupled with appropriate high 
order approximations for the velocities. The rate of convergence of the outer itera- 
tions slows down considerably when computing for larger values of Re. This is an 
on-going difficulty with all solution methods. We are currently investigating alter- 
native methods such as the multigrid and multilevel techniques [7, 20,221 to 
obtain high accuracy driven cavity solutions for much larger values of Re and to 
solve other problems of viscous fluid flow. The results of these investigations shall 
be reported in the future. 

TABLE XI 

Number of Outer Iterations, CPU Execution Times to 
Converge to lo-’ (CRAY XMP24) 

Re 
Second-order Fourth-order 

velocities velocities 

1 157 157 
100 353 353 
400 516 509 

1000 1248 ( 148 s) 1040(127s) 
2000 >6200(>645s) 4266 (482 s) 
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